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Landslides affect nearly every country in the world each year. To better understand this
global hazard, the Landslide Hazard Assessment for Situational Awareness (LHASA)
model was developed previously. LHASA version 1 combines satellite precipitation
estimates with a global landslide susceptibility map to produce a gridded map of
potentially hazardous areas from 60° North-South every 3 h. LHASA version 1
categorizes the world’s land surface into three ratings: high, moderate, and low hazard
with a single decision tree that first determines if the last seven days of rainfall were intense,
then evaluates landslide susceptibility. LHASA version 2 has been developed with a data-
driven approach. The global susceptibility map was replaced with a collection of
explanatory variables, and two new dynamically varying quantities were added: snow
and soil moisture. Along with antecedent rainfall, these variables modulated the response
to current daily rainfall. In addition, the Global Landslide Catalog (GLC) was supplemented
with several inventories of rainfall-triggered landslide events. These factors were
incorporated into the machine-learning framework XGBoost, which was trained to
predict the presence or absence of landslides over the period 2015–2018, with the
years 2019–2020 reserved for model evaluation. As a result of these improvements, the
new global landslide nowcast was twice as likely to predict the occurrence of historical
landslides as LHASA version 1, given the same global false positive rate. Furthermore, the
shift to probabilistic outputs allows users to directly manage the trade-off between false
negatives and false positives, which should make the nowcast useful for a greater variety of
geographic settings and applications. In a retrospective analysis, the trained model ran
over a global domain for 5 years, and results for LHASA version 1 and version 2 were
compared. Due to the importance of rainfall and faults in LHASA version 2, nowcasts
would be issued more frequently in some tropical countries, such as Colombia and Papua
New Guinea; at the same time, the new version placed less emphasis on arid regions and
areas far from the Pacific Rim. LHASA version 2 provides a nearly real-time view of global
landslide hazard for a variety of stakeholders.
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INTRODUCTION

Landslides cause thousands of casualties and substantial
socioeconomic impacts around the world every year
(Kirschbaum et al., 2015a; Froude and Petley, 2018). Rainfall
is the most frequent trigger of these landslide events, although
earthquakes and anthropogenic impacts such as mining and
construction can also be tremendously destructive. Near real-
time information on the spatiotemporal distribution of potential
landslide hazards may mitigate loss and improve the speed and
effectiveness of disaster response and recovery. Remotely sensed
data can provide a global view of this hazard to advance
understanding of landslide processes and improve landslide
monitoring and prediction.

At a local scale, the basic physics behind mass movements of
rock and soil (herein landslides) are well understood and
incorporated into the practice of geotechnical engineering.
While physically based models can be difficult to apply over
large areas, some practitioners have reported success with this
approach (Raia et al., 2014; Hsu et al., 2018; Thomas et al., 2018).
Physically based models typically require a significant amount of
information about subsurface conditions and can be sensitive to
small errors in these values (Iverson et al., 2015). Because accurate
descriptions of the ground are rarely available for large areas,
most regional landslide hazard assessment systems instead rely
on an empirical approach (Guzzetti et al., 2020).

Many different empirical approaches to spatial and temporal
prediction of rainfall-triggered landslides have been applied since
the 1970s, with hazard assessment or early warning systems
applied in many regions of the world (Guzzetti et al., 2020).
Most commonly, researchers rely on thresholds that take into
account both the intensity and the duration of rain storms (e.g.
Gariano et al., 2015; Segoni et al., 2018), with inclusion of snow
and snowmelt as a contributing factor in some models (e.g.
Chleborad et al., 2008; Krøgli et al., 2018). A growing number
of systems also use soil moisture as a predictor of potential
instabilities (e.g. Brocca et al., 2012; Mirus et al., 2018;
Felsberg et al., 2021). While snow water equivalent and soil
moisture content have a straightforward connection to the
saturated conditions under which many landslides occur, the
same is not true of land cover. Although rarely considered as an
influencing factor for landslide triggering (Guzzetti et al., 2020),
land cover is often used to calculate landslide susceptibility; in
turn, susceptibility is often used to predict rainfall-triggered
landslides (Hong and Adler, 2007; Kirschbaum et al., 2015b;
Monsieurs et al., 2019).

Although many landslide models have been developed at local
and regional scales, few have characterized landslide hazard at a
global scale. The National Aeronautics and Space Administration
(NASA) has developed a nearly global landslide nowcasting
system that locates the most hazardous conditions in near
real-time. Landslide Hazard Assessment for Situational
Awareness (LHASA) version 1 is a decision tree model that
produces a map of potentially hazardous landslide areas
between 60° North and South latitude with three
categorizations: low hazard, moderate hazard, and high hazard
(Kirschbaum and Stanley, 2018; Emberson et al., 2020). It

combines satellite precipitation estimates with a global
landslide susceptibility map that incorporates information on
roads, faults, geology, forest loss, and topography (Stanley and
Kirschbaum, 2017). LHASA version 1 was evaluated with
landslide reports from the Global Landslide Catalog (GLC;
Kirschbaum et al., 2015a), but the model structure,
susceptibility analysis, and rainfall threshold were derived
from literature review and expert judgment, rather than a
data-fitting process. LHASA version 1 runs at NASA’s
Goddard Space Flight Center and integrates a multi-satellite
product developed by the Global Precipitation Measurement
(GPM) mission, which merges multiple satellite precipitation
estimates to produce the Integrated Multi-satellitE Retrievals
for GPM (IMERG; Huffman et al., 2020). The most recent
nowcast can be accessed through an ESRI REST API or
viewed at https://landslides.nasa.gov/viewer/ (Figure 1).

Although LHASA version 1 has provided nearly global
situational awareness of potential landslide activity, new
landslide inventories and satellite-based datasets have recently
enabled the use of a data-driven approach to landslide nowcasting
at the global scale. Machine learning is now widely used in
landslide susceptibility mapping (Korup and Stolle, 2014;
Segoni et al., 2015; Reichenbach et al., 2018), and it has been
proposed for use in dynamic predictions of slope failure in some
cases (van Natijne et al., 2020). Machine learning promises
important benefits: improved overall accuracy and
probabilistic outputs that better reflect the low but non-zero
chance of landslides in flat and dry regions. However, machine
learning also presents several challenges. First, the combination of
numerous variables with large datasets can lead to overfitted
models that are unreliable or even physically unrealistic. Second,
these models are often complex to the point of inscrutability,
which decreases trust in even well-founded methods. Finally,
model performance is almost entirely tied to the available data,
which presents a significant challenge at the global scale. Despite
these limitations, recent research shows that these issues can be
addressed when reasonable precautions are taken (Stanley et al.,
2020).

In this work, we have outlined a data-driven approach to
global rainfall-triggered landslide hazard assessment that
outperforms LHASA version 1. The goal was to advance from
categorical to probabilistic global nowcasts of rainfall-triggered
landslide hazard, as well as substantially increase the model’s
accuracy. We present the methodology for LHASA version 2 here
and compare the performance of both versions over the period
2015–2020 with new landslide inventories. These nowcasts are
intended to facilitate disaster planning and response at regional to
global scales by a broad range of stakeholders such as
governments, relief agencies, emergency responders, and
insurers.

MATERIALS AND METHODS

Explanatory Variables
Several globally extensive datasets were considered for use
as predictive variables (predictors) in LHASA. These included

Frontiers in Earth Science | www.frontiersin.org May 2021 | Volume 9 | Article 6400432

Stanley et al. Data-Driven Landslide Nowcasting

https://landslides.nasa.gov/viewer/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


the variables previously used to generate the global
landslide susceptibility map (Stanley and Kirschbaum, 2017)
and to run LHASA version 1 (Kirschbaum and Stanley, 2018).

In addition, several new variables with the potential for
explaining the variability in landslide occurrence were
tested. The predictors retained were those with an obvious

FIGURE 1 | This map shows a nowcast (version 1) for November 18, 2020, during the passage of Hurricane Iota through Nicaragua and Honduras. The latest
global landslide nowcast can be viewed (along with supplementary information) at https://landslides.nasa.gov/viewer/.

TABLE 1 | Explanatory variables were chosen for their relevance, diversity, and contribution to predictive strength of the model.

Dataset Derived variable Citation

Digital Elevation Data from Viewfinder Panoramas Maximum slope de Ferranti (2014)
GEM Global Active Faults Distance to fault GEM Hazard Team (2019)
Global Lithological Map Lithologic strength Hartmann and Moosdorf (2012)
Soil Moisture Active-Passive Level 4 Total profile soil wetness Reichle et al. (2018)
Soil Moisture Active-Passive Level 4 Snow mass Reichle et al. (2018)
Integrated Multi-satellitE Retrievals for GPM Antecedent rainfall Huffman (2016)
Integrated Multi-satellitE Retrievals for GPM Rainfall Huffman (2016)

A prerequisite for considering a dataset was that it was globally extensive and publicly available.
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relevance to landslide occurrence and were used in one or more
decision trees during model training. These variables are snow
mass, soil moisture, slope, distance to faults, lithologic strength,
antecedent rainfall, and current daily rainfall (Table 1).

Slope is a strong predictor of landslides because it can identify
areas too flat for most landslides to occur. A key component of the
existing global susceptibility map, this variable was calculated by
first deriving the slope for each 90 m grid cell in the Viewfinder
Panoramas digital elevation model (de Ferranti, 2014), then
aggregating these values by selecting the maximum value
within each 30-arcsecond grid cell. The maximum value was
used in order to avoid omitting generally flat regions in which
some hazardous locations may still exist.

The primary rationale for using distance to active faults as a
landslide predictor is that earthquakes trigger landsliding, while also
rendering landscapes more landslide-prone for years following
(Marc et al., 2015). From a long-term perspective, faults are the
site of tectonic activity, which often involves mountain building and
high erosion rates, including mass wasting. The distance to the
nearest active fault exhibits a strong empirical association with
landslide occurrence, as will be shown in A Data-Driven
Nowcast. This variable was derived from a global database of
active faults that is not complete but covers most of the world’s
land surface (GEM Hazard Team, 2019).

The physical properties of earth materials control whether and
how landslides occur under forcing conditions such as intense
rainfall and seismic shaking. Although detailed properties of the
soil and rock profile are not globally available, use of regional
geologic maps improves landslide susceptibility determinations
(Amatya et al., 2019). Even simplified groups based on rock type
are useful for modulating rainfall thresholds at the regional scale
(Peruccacci et al., 2012). The release of open data sets such as the
global lithologic map used in this work (Hartmann and
Moosdorf, 2012) should enhance landslide research at the
global scale. The map contains 16 major lithologic classes,
which we use to inform models of landslide occurrence by
broadly representing geotechnical properties based on
weathering susceptibility that are independent of topography
and seismicity. In A Global Lithologic Rating, we describe how
this map was converted into a lithologic strength rating.

Antecedent soil moisture can reduce the rainfall necessary to
induce slope failure (Ponziani et al., 2012; Zhao et al., 2019). In
situ sensors provide good estimates of soil moisture fluctuations
in hilly terrain (Thomas et al., 2019), but are not globally
available as a dense network with rapid reporting. Both
models and satellites can offer this global coverage, albeit at
a coarse spatial resolution. The Soil Moisture Active Passive
Level 4 (SMAP L4) product (Reichle et al., 2018) combines a
hydrologic model with satellite observations to produce a high-
quality product with continuous coverage. Bessette-Kirton et al.
(2019) found that wet areas identified by SMAP L4 were
associated with areas of dense landslide occurrence in Puerto
Rico and Felsberg et al. (2021) found that SMAP data performed
well relative to other global measurements of soil moisture.
However, SMAP L4 has a latency of roughly 2.5 days, which
means that it can only be used in a real-time product as an
antecedent contributing factor, not the proximate cause of slope

failure. SMAP L4 includes several variables related to soil
moisture. LHASA version 2 uses “total profile soil wetness,”
a dimensionless measure of the soil water content between the
ground surface and bedrock. Values range from 0, indicating no
water content, to 1, indicating complete soil saturation. Unlike
the volumetric soil moisture, this variable represents a locally
standardized quantity, obviating any data transformation by the
nowcast algorithm.

The presence of snowpack can be an important factor that
increases the severity of rainfall-triggered landslide events in
some regions (Chleborad, 2000; Sarikhan et al., 2008;
Musselman et al., 2018; Vega et al., 2020). Falling rain can
melt snow, which increases the total volume of water available
to infiltrate and increase subsurface pore pressures. Although a
few variables related to snow are available in the SMAP L4
product, only snow mass was chosen to avoid inclusion of
highly correlated model inputs and to reduce processing time.
The snow mass variable is measured in kilograms per square
meter and is not normalized by LHASA version 2. The inclusion
of snow mass enables the global landslide nowcast to reflect the
potential for melting snow to run off or flow into groundwater,
combining with the total from rainfall.

Precipitation is the fundamental triggering variable
considered in this model. Consistent with LHASA version 1,
IMERG is used to identify conditions under which landslide
triggering is more likely. IMERG provides high-quality, low-
latency estimates of precipitation (Huffman, 2016; Huffman
et al., 2020) and has been used in landslide modeling at multiple
scales (Kirschbaum et al., 2015b; Kirschbaum and Stanley, 2018;
Hartke et al., 2020). For this study, we use IMERG version 06B,
which encompasses data from both the Tropical Rainfall
Measuring Mission (TRMM) and the GPM mission, because
it provides a nearly 20 years record of precipitation from June
2000 to present. IMERG provides three latencies of products to
support different user groups: early (∼4 h latency), late
(∼12–14 h latency), and final (3.5 months latency). In this
model, we use the IMERG Early Product, which is available
at a 0.1 degree, 30 min spatiotemporal resolution at https://gpm.
nasa.gov/data/imerg. In addition to estimating precipitation
depth, IMERG estimates the probability that precipitation
will be in liquid phase. This is determined with reference to
the wet-bulb surface temperature from numerical weather
predictions, which is the key variable for separating
precipitation phases (Sims and Liu, 2015). (Wet-bulb
temperatures combine temperature with humidity to account
for the effects of evaporation). Because falling snow and freezing
rain are unlikely to trigger rapid snowmelt or landslides, LHASA
version 2 uses liquid precipitation, referred to as “rain” or
“rainfall” in this manuscript. For this study, daily data were
used to develop the global landslide nowcast because the exact time
of occurrence is not available for most historical landslide events.

Landslide Data
In order to represent the spatiotemporal distribution of rainfall-
triggered landslides, dozens of published landslide inventories
were compiled with a few privately held landslide inventories.
Original published landslide datasets were retrieved from
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university research articles, government agencies, and
professional contacts within the landslide research
community. From these, we chose inventories for use in
model development (Table 2) that were authoritative, well-
documented, or from a trusted source. In addition to
previously developed inventories, the NASA landslides team
developed an additional set of event-based inventories triggered
primarily by major rainfall events using a semi-automatic
landslide detection method described below.

Manual mapping of landslides after a major triggering event
can be extremely time consuming. Amatya et al. (2021) presents
an open-source tool for rapid mapping of landslides from high
resolution optical imagery using semi-automated techniques.
The Semi-Automatic Landslide Detection (SALaD) system
relies on object-based image analysis and machine learning
to create polygon representations of landslides. This tool has
been applied after several disasters, including events in
Zimbabwe and Vanuatu (Table 2). It was also applied
retrospectively to map landslides triggered by Cyclone
Komen in Myanmar. Similar inventories were produced with
commercial software for events in Burundi, Brazil, and Japan
(Amatya et al., 2019). In addition, landslide outlines were hand
mapped from optical satellite imagery for events in the
Philippines and India (Emberson et al., 2021). Finally, an
inventory of landslide initiation points in Pokot, Kenya was
manually mapped from a Sentinel-2 satellite image (Benz and
Stanley, 2020).

In addition to these event-based landslide inventories, NASA
has maintained the GLC, a multitemporal inventory of rainfall-
triggered landslides. This database contains over 11,000
landslide reports (Table 2), which have been obtained
primarily from news media (Kirschbaum et al., 2010;

Kirschbaum et al., 2015a). The GLC has been completed for
the years 2007–2017, and the first half of 2018 is also complete.
Some linguistic and economic biases are known to affect the
GLC, which are outlined in Kirschbaum et al. (2010) and
(2015). Nevertheless, it is an invaluable resource for research
at the global scale because it represents far more individual
landslide events than are available as event-based landslide
inventories. The GLC has recently been supplemented by the
Landslide Reporter Catalog (LRC), an inventory of landslides
reported by citizen scientists (Juang et al., 2019). Although it is
much smaller than the GLC, the quality of reports in the LRC
appears to be comparable to those in the GLC. In addition, the
spatiotemporal distribution of points in the LRC is somewhat
different from the GLC, so it may help correct some limitations
of the GLC. Both catalogs can be viewed and downloaded at
https://landslides.nasa.gov/viewer. As part of the National
Climate Assessment, landslide inventories from across the
United States of America were compiled into a single
database of rainfall-triggered landslides with known dates
(Kelkar et al., 2017). Although these multitemporal
inventories contain many independent landslide events, most
reports are not within the temporal window considered for this
analysis, which starts in 2015, or lack the necessary spatial
precision for model training.

Several datasets from other researchers were also used for
developing a global landslide nowcast. The Australian
government has published a long-term national record of
landslides (Geoscience Australia, 2018), while Ecuador has
published many landslides that occurred during the year 2016
(Secretaría de Gestión de Riesgos - Escenarios, 2016). Inventories
of landslides triggered bymajor rainfall events in Colombia (Marc
et al., 2018), Dominica (van Westen and Sijmons, 2016;

TABLE 2 | Landslide inventories used to train or validate the global landslide nowcast model.

Inventory Name Location Time Range Type of
Catalog

Number of
Landslides

Citation

Cyclone Komen Inventory Myanmar 2015 Polygon 4317 Amatya et al. (2021)
Cyclone Idai Rapid-Response Inventory Zimbabwe 2019 Polygon 1319 Amatya et al. (2021)
Cyclone Harold Rapid-Response Inventory Vanuatu 2020 Polygon 1481 Amatya et al. (2021)
Typhoon Prapiroon Rapid-Response Inventory Japan 2018 Polygon 6418 Amatya et al. (2019)
Burundi Rapid-Response Inventory Burundi 2019 Polygon 289 Amatya et al. (2019)
Rio de Janeiro Rapid-Response Inventory Brazil 2019 Polygon 61 Amatya et al. (2019)
Typhoon Tembin Inventory Philippines 2017 Polygon 17 Emberson et al. (2021)
Typhoon Mangkhut Inventory Philippines 2018 Polygon 458 Emberson et al. (2021)
Thrissur Landslide Inventory India 2018 Polygon 188 Emberson et al. (2021)
Pokot Landslide Inventory Kenya 2019 Point 421 Benz and Stanley (2020)
United States Landslide Inventory United States 2015–2017 Point 9539 Kelkar et al. (2017)
Global Landslide Catalog World 2015–2018 Point and Polygon 11528 Kirschbaum et al. (2015a)
Landslide Reporter Catalog World 2015–2019 Point and Polygon 196 Juang et al. (2019)
National Landslide Inventory of Australia Australia 2015–2018 Point 1291 Geoscience Australia (2018)
2016 Active Events Map Ecuador 2016 Point 346 Secretaría de Gestión de Riesgos -

Escenarios (2016)
Salgar Landslide Inventory Colombia 2015 Polygon 170 Marc et al. (2018)
Dominica Landslide Inventory Map Dominica 2015 Polygon 1548 van Westen and Sijmons (2016)
Landslides and floods triggered by Hurricane Maria in Dominica Dominica 2017 Polygon 9902 van Westen and Zhang (2018)
Map of slope-failure locations in Puerto Rico after HurricaneMaría United States 2019 Point 71431 Hughes et al. (2019)

Some landslides within these inventories were not used due to the event date or other concerns. Although these inventories represent a broad swath of terrain from every inhabited
continent, the collection is far from a complete record of rainfall-triggered landslides, even for the years 2015-present.
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van Westen and Zhang, 2018), and Puerto Rico (Hughes et al.,
2019) enriched the coverage of the Americas. Taken together, the
combined inventories from NASA and other researchers provide
a much more extensive view of landslide occurrence than is
available from any single dataset.

Data Preparation
A Climatic Correction Factor
The rainfall necessary to initiate slope failure varies
geographically (Baum and Godt, 2009), due to topographic,
lithological (Peruccacci et al., 2012), and climatic factors
(Wilson and Jayko, 1997). With respect to climate,
normalizing model precipitation thresholds by mean annual
precipitation alone is unlikely to succeed over large areas
because it fails to consider the frequency and intensity of the
rainfall events that compose annual totals (Wilson, 2000).
Instead, geographic variations can be accounted for by
evaluating real-time precipitation relative to extreme events. In
LHASA version 2, we use the 99th percentile to represent
relatively extreme events, and divide daily rainfall totals at
each pixel by that amount. To calculate the historical 99th
percentile rainfall at each grid cell, a set of empirical
observations for each 0.1° grid cell in the area from 60°N to
60°S was generated from the final IMERG daily rainfall totals for
the years 2000–2018. For each grid cell, a synthetic log-normal
distribution was fitted to the data with the SciPy python library
(Virtanen et al., 2020), because the log-normal distribution fits
satellite rainfall data well (Cho et al., 2004). Moreover, the log-
normal distribution is not as sensitive to the skewness of rainfall
data when compared with the gamma distribution, which means
the estimation of extreme values using synthetic fits is less
influenced by outliers in the empirical data. A global 0.1°

raster that represented the 99th percentile rainfall was
generated from the log-normal distributions defined for each
grid cell.

A Global Lithologic Rating
The global lithologic map (GLiM; Hartmann and Moosdorf,
2012) was converted to a lithologic strength rating by using
maximum topographic slope as an indicator of material
strength. This analysis relies on the physical assumption that
stronger rocks will, on average, support steeper slopes in

mountainous terrain (Schmidt and Montgomery, 1995). For
each lithologic unit, we extracted the distribution of maximum
slope values at 1 km2 resolution. The average of this maximum
slope distribution was calculated for each lithologic category,
from which a ranked order of lithology was determined (Table 3).
For this analysis, we excluded low-relief areas (maximum slope <
25°) because much of the world’s terrain lacks relief for reasons
other than lithologic strength. This choice of slope threshold was
subjective but balanced the size of the area observed with the need
to focus on mountain belts.

Some units from the GLiM database were combined and
others were excluded. Combining units with similar slope
distributions but small spatial extents avoided spurious results
and produced a classification where most lithologic groups had
similar spatial representation in our analysis of between 12 and
24% of the total analyzed area (Table 3). For example, volcanic
rocks and plutonic rocks of variable chemistry were merged into
two categories, respectively. The exception to these roughly
equal-extent categories was “weak sedimentary rocks,” which
is represented by evaporites and unconsolidated sediments and
covers just 3% of the analyzed area. GLiM categories of “no-data,”
water bodies, and ice were excluded from the slope analysis and
assigned a lithologic rating of zero.

The resulting ranking by slope largely follows weathering
susceptibility of primary rock forming minerals (e.g. Wilson,
2004), with the exception of weak sedimentary materials where
lithification likely plays a dominant role. Although this rating
was constructed with a small portion of the global slope dataset,
it represents an independent and physically meaningful
quantity. It is worth noting that this classification relies on
lithology alone, and therefore lacks consideration of rock age
used by other proposed lithology ranking schemes for landslide
susceptibility (e.g. Nadim et al., 2006). We favor use of GLiM
because the map resolution is much higher than other global
datasets that include rock age. We also recognize that soil cover
is highly variable and contributes to landslide susceptibility that
is not considered by our analysis. This approach also avoids the
use of landslide data as a means of determining the relative
strength of lithologic units, which would pose problems related
to the small number of landslides recorded in some lithologic
units, confounding variables, and the independence of the
validation data. A recent global analysis of erodibility used
similar methods and data to produce a series of lithologic
ratings that resemble but are not identical to that in Table 3
(Ott, 2020).

A Global Gridded Landslide Inventory
In order to reflect the diversity of landslides triggered by rainfall,
numerous landslide inventories were obtained (Table 2). These
data spanned a gamut of spatial, tabular, and text formats. Each
inventory was stored in a geodatabase if basic information such as
the spatial coordinate reference system could be ascertained.
Events without an associated date were omitted from the
geodatabase. Landslides that occurred before the availability of
SMAP data in 2015 were removed, as were landslides with spatial
uncertainty worse than 1 km, and landslides caused by triggers
other than rainfall (e.g. earthquakes). Some specific types of mass

TABLE 3 | A global lithologic map was converted into a material strength ranking
by merging lithologic categories into groups and ranking the groups based on
the average of maximum slope angles from 1 km bins.

Lithologic Group Fraction of Steep Terrain
(%)

Strength

Weak Sedimentary 3 1
Volcanic 14 2
Siliciclastic Sedimentary 17 3
Mixed Sedimentary 23 4
Metamorphic 15 5
Carbonate 12 6
Pluton 14 7
Other 1 0

Global analysis was limited to regions with >25°slope.
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wasting were also removed, if known: rock falls, topples, creeps,
riverbank collapses, and snow avalanches. The map of landslides
triggered by Hurricane Maria in Dominica identified the parts of
landslides, so only source areas were incorporated into the global
gridded landslide inventory. Unfortunately, this information was
not available for other inventories, although the Pokot inventory
does represent landslide initiation points. The merged inventory
was then converted to a grid with a 30-arcsecond daily resolution
by counting the number of landslides in each grid cell. (In the case
of polygons that extended over multiple grid cells, the polygon
centroid was used to assign the landslide’s location.) These counts
may contain some redundant reports of the same landslide from
multiple inventories, but any redundancy does not affect the
modeling results because LHASA version 2 simply attempts to
predict the presence or absence of landslides, not the number. A
version of this gridded global landslide inventory (with open
datasets only) can be downloaded from landslides.nasa.gov. This
gridded global landslide inventory was crucial for training the
landslide nowcast model.

A Data-Driven Nowcast
In order to achieve the full potential of machine learning, we
employed XGBoost, a widely used framework (Chen and
Guestrin, 2016). Due to its accuracy and speed, XGBoost has
been applied to numerous problems, including landslide research
(Zhao et al., 2018; Chakraborty et al., 2019; Sahin, 2020; Stanley
et al., 2020). This algorithm builds an ensemble of trees by
creating a single tree at each iteration. Each successive tree
corrects the deficiencies of the existing ensemble. These trees
are often called “weak learners” because they are poorly predictive
as individuals but can be extremely powerful as a collective.
XGBoost can be applied in other ways, but LHASA version 2 has

been structured as a binary classification problem in which the
algorithm was trained to predict the presence or absence of
landslides. In addition to speed and accuracy, XGBoost offers
several additional benefits that led to its use in the global landslide
nowcast. It has a large user community, extensive documentation,
and access via multiple programming languages. XGBoost also
offers features that can make the trained model more realistic and
reliable. Interaction constraints control which variables can be
included in the same tree. Monotonicity constraints limit the
direction in which each variable contributes to the final output,
but the weight of that contribution is still determined empirically.
The latter is an important tool to prevent overfitting (Stanley
et al., 2020). Finally, the structural similarity between its trees and
the tree structure of LHASA version 1 (Kirschbaum and Stanley,
2018) should help users to make the switch. For these reasons, the
new global landslide nowcast was created by training a model
with the XGBoost library.

In LHASA version 2, information from a variety of time scales
is merged to produce a map of landslide hazard for the current
moment. The model incorporates slowly changing or static
variables, such as topography and lithologic strength, as well
as time variant ones including rainfall and soil moisture
(Table 1). LHASA version 2 incorporates the most recent
daily rainfall available in IMERG, which has a 4 h latency
(Figure 2). The possible contribution of melting snowpack to
runoff and groundwater is represented by the variable snow mass
from SMAP L4. The full profile soil wetness from SMAP L4
represents the state of surficial ground water prior to the current
rainfall. Because SMAP L4 has a latency of about 3 days, the gap
between antecedent soil wetness and current daily rainfall must
be filled by an antecedent rainfall metric (Figure 2). In LHASA
version 2, the antecedent rainfall is simply summed over the most

FIGURE 2 | Four dynamic predictors, derived from satellite remote sensing, are used to produce the global landslide nowcast. The full-profile soil wetness and
snow mass variables from the SMAP level 4 have a latency greater than 2 days. Therefore, 2 days of antecedent rainfall are used to fill the gap between these variables
and the most recent rainfall.
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recent 2 day period. This combination of data from multiple time
periods was intended to succinctly represent processes that
contribute to landslide hazard over a range of time scales.

These variables were translated to a probability of landslide
occurrence with XGBoost by using the gridded global landslide
inventory as a target dataset with a daily 30-arcsecond
resolution. (All predictors were regridded to this resolution
with the nearest-neighbor method.) The nowcast model was
trained with data from the period April 3, 2015 to December 31,
2018. (Any incomplete data points were removed.) This dataset
included 9,700 landslide grid cells and over 1 million grid cells
randomly selected across space and time to represent the non-
occurrence of terrestrial landslides. Each class was split
randomly into a training dataset that contained 80% of the
available grid cells and a testing dataset that contained the
remaining 20%. This testing dataset was used only for model
development; landslide inventories from the years 2019 and
2020 were retained for model evaluation, as described below. An
ensemble of 1,000 trees was trained, but performance on the test
dataset declined after 300 iterations. Therefore, only the first 300
trees were retained for subsequent predictions, including model
validation. Table 4 summarizes the model settings. Model depth
was limited to a maximum of 2, in order to enable a specific
arrangement of interaction constraints. A rarely used feature of

XGBoost, interaction constraints control which variables can be
included in the same model tree. In this scheme, all variables
were forced to interact with rainfall, but other interactions were
disabled. This arrangement was intended to represent the effects
of all other preconditions on the rescaled daily rainfall necessary
to trigger landslides. This model design parallels the “trigger-
cause” framework proposed by Bogaard and Greco (2018),
although its intellectual origins lie with the recent-antecedent
rainfall thresholds for the city of Seattle in the western
United States of America (Chleborad, 2000; Scheevel et al.,
2017). Relatively few changes to other model settings were
required (Table 4).

The trained model relies most heavily on the current daily
rainfall to determine whether landslides are probable, as
indicated by standard metrics of variable importance: gain,
coverage, and frequency (Table 5). Gain represents the
information obtained from the average split on that variable,
coverage represents the portion of data points for which a
variable impacts the model outputs, and frequency indicates the
number of times XGBoost makes a split on a variable. Due to the
design of the interaction constraints, rainfall would be expected to
show a high frequency—but the high gain and coverage indicate a
strong empirical relationship between current daily rainfall and
landslide occurrence. The same pattern can be seen in an example
tree (Figure 3), but the other variables occupy a large proportion of
the nodes in other trees. These variables were retained in the final
model because they may be important in scenarios such as rain-on-
snow events, even if the overall weight is less than for rainfall.

Data preprocessing and model training occurred on a virtual
machine with ten central processing units, 120 gigabytes of
memory, and a Linux operating system. It took approximately
8 min to produce a global nowcast for 1 day. Input-output
operations were more significant to system performance than
the machine-learning model itself, which requires less than a
minute to process the entire world for 1 day. In order to speed up
processing, the retrospective model run was divided across
multiple virtual machines, each handling 1 year of data. These
resources were provided by the Advanced Data Analytics
Platform at the NASA Center for Climate Simulation (https://
www.nccs.nasa.gov/systems/ADAPT).

Evaluation Across Inventories
The model was applied to data from May 2015 to April 2020 based
on the length of the SMAP L4 archive. As in model training,
incomplete data points were dropped; these were typically coastal
pixels masked in SMAP L4. The resulting daily maps of landslide
probability were limited to the zone between 60° North and South. In
order to evaluate the model’s performance against the discrete
outputs of LHASA version 1 (Emberson et al., 2020), a threshold
of 0.12 was applied to the probabilistic outputs of LHASA version 2;
this ensured that the discretized nowcasts would have the same false
positive rate (FPR). This threshold is solely intended for comparison
and is not necessarily optimal for any specific use. An operational
system should consider multiple goals prior to the selection of one or
more probability thresholds to determine landslide hazard levels.

Temporal separation of training and validation data has been
recommended for hydrological modeling (KlemeŠ, 1986) and

TABLE 4 | These settings control the process of model training.

Setting Value

Tree method “exact”
Number of threads 10
Objective “binary:logistic”
Number of rounds 300
Maximum depth 2
η (shrinkage) 0.05
Maximum delta step 1
Subsample 0.5
Monotone
constraints

positive for all variables except distance to faults and
lithologic strength, which were negative

Other model
settings

Default values

XGBoost has many settings not shown here, but the default values produced good
results.

TABLE 5 | XGBoost provides default metrics of variable importance; the values
shown here have been rescaled to sum to 1.

Variable Gain Coverage Frequency

Current daily rainfall 0.74 0.54 0.42
Distance to faults 0.10 0.09 0.12
Maximum slope 0.08 0.10 0.12
Antecedent rainfall 0.05 0.13 0.14
Soil wetness 0.02 0.06 0.08
Lithologic strength 0.00 0.04 0.06
Snow mass 0.00 0.04 0.06

Gain represents the information obtained from the average split on that variable,
coverage represents the portion of data points for which a variable impacts the model
outputs, and frequency indicates the number of times XGBoost makes a split on a
variable. The current daily rainfall was the most important variable by all 3 metrics, but
seismicity and topography are also important factors.
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machine learning (Galvez et al., 2019), because the use of random
train-test splits or cross-validation can reduce the
independence of the validation dataset by using data from
the same event for both model development and evaluation. In
keeping with this practice, landslide inventories collected for
rainfall events in the years 2019 and 2020 were used to evaluate
the model. Then, the predicted probability for the date and
location of each landslide was extracted. For comparison, the
LHASA version 1 high-hazard nowcast was also extracted for
each landslide. Landslides with probabilities higher than the

threshold were considered true positives, and the others were
considered false negatives. With these values, a true positive
rate (TPR) was calculated for each validation inventory, as well
as the combined meta-inventory.

RESULTS

LHASA version 2 outperformed version 1 for all landslide
inventories evaluated (Table 6). Overall results were excellent

FIGURE 3 | The 1st of 300 trees in the XGBoost ensemble uses current rainfall and distance to faults (m). This indicates that hazard is highest when rainfall is high
and distance to faults is low. Other trees in the model have a similar structure but may split these or other variables at different numerical values.

TABLE 6 | The model’s performance was assessed by inventory and across all inventories.

Inventory Landslides TPR-LHASA 1.1 (%) TPR-LHASA 2.0 (%) Mean prediction (%)

Training inventories (2015–2018)
Australia 149 7 34 13
GLC 1057 13 17 9
Ecuador 786 12 21 10
USLI 302 7 34 23
Cyclone Komen 4317 67 100 67
Hurricane Erika 1548 0 100 93
Typhoon Mangkhut 458 98 100 92
Hurricane Maria (Dominica) 9902 0 100 86
Hurricane Maria (Puerto Rico) 71431 44 100 94
Typhoon Prapiroon 6418 11 100 98
Salgar, Colombia 170 92 100 75
Typhoon Tembin 17 100 100 94
Thrissur 188 14 100 76
Combined 95957 38 98 90

Validation inventories (2019–2020)
LRC 66 23 32 13
Burundi 289 12 46 28
Cyclone Harold 1481 95 100 80
Cyclone Idai 1319 0 100 28
Pokot 405 37 99 42
Rio de Janeiro 61 0 0 1
Combined 3555 45 93 50

LHASA version 2 outperformed version 1 for all inventories. The true positive rate (TPR) was highest for major landslide events triggered by tropical cyclones. The mean prediction was
obtained by determining the probability that would have been output for the time and date of each historical landslide; then, the arithmetic mean of these values was calculated.
Percentages have been rounded.
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for both the training and validation data. However, LHASA
version 2 failed to predict a probability greater than 0.12 for
the majority of landslides in several inventories: the GLC, LRC,
USLI, and the databases for Australia, Burundi, and Rio de
Janeiro. With the exceptions of Burundi and Rio de Janeiro,
high probabilities of landslide occurrence were obtained for all
the event-based landslide inventories (Figure 4). Possible reasons
for these failures are discussed below.

Given a threshold of 0.12, LHASA version 2 produced
nowcasts most frequently in landslide hotspots (Figure 5). We
assume that the frequency of nowcasts serves as an
approximation of the true false alarm rate, because landslide
events are quite rare in most locations. The most notable hotspots
were in the nations of Colombia, Indonesia, and Papua New
Guinea, where nowcasts were produced more than 10% of the
time in small areas. However, LHASA version 2 would have
produced nowcasts quite rarely in most of the world (Figure 5),
and even large mountainous regions would have a false alarm rate
less than 1%. In contrast, LHASA version 1 produces nowcasts at

a relatively consistent rate in susceptible zones because it uses a
percentile-based threshold (Kirschbaum and Stanley, 2018). A
few of these nowcasts represent landslide events, but most are not
associated with reported landslides.

In addition to evaluating the model’s performance relative to
the existing global nowcasts, the predictions can provide some
insight into patterns of landslide hazard—although the 5 years
timeframe precludes the detection of long-term trends or climate
patterns. The mean daily probability of landslide occurrence for
each 30-arcsecond grid cell shows the relative hazard across the
world’s temperate and tropical regions. This average is very low in
flat or dry regions such as the Sahara Desert and the Australian
Outback (Figure 6). Like the global landslide susceptibility map
(Stanley and Kirschbaum, 2017), this map highlights the major
mountain ranges and the Pacific Rim. However, the importance
in LHASA version 2 of rainfall and proximity to active faults
(Table 5) has reduced the emphasis on certain areas, such as
eastern North America, coastal Brazil, and Tibet, relative to the
susceptibility map. This retrospective analysis also identified a

FIGURE 4 | Predictions made by LHASA version 2 at individual landslides in the validation inventories range from 0 to 93%. The red line indicates the probability
threshold of 0.12 that represents an equivalent global false positive rate (FPR) to the LHASA version 1 nowcast. If this threshold were raised, both the true positive rate
(TPR) and FPR would be reduced. Likewise, lowering the threshold would increase both TPR and FPR.

FIGURE 5 | The false alarm rate for the time period May 1, 2015 to April 30, 2020 would have been very low in most locations. However, small hotspots in New
Guinea and the northern Andes would have experienced nowcasts more than 10% of the time.
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few locations with unusually high probabilities of landslide
occurrence: the Northern Andes, the Indonesian archipelago,
and the East African Rift (Figure 6). The distribution of hazard
across the latter region largely corresponded to that shown in a
data-based landslide susceptibility map of Africa (Broeckx et al.,
2018), but LHASA version 2 places relatively less emphasis on
other African regions. Figure 6 shows greater differences with a
map of precipitation-triggered landslide hazard for Indonesia
(Cepeda et al., 2010), which placed a higher emphasis on the
islands of Sulawesi, Borneo, and Flores. Despite some changes in
emphasis, the overall geographic distribution of landslide hazard
identified by LHASA version 2 generally corresponds with
findings from prior landslide research.

DISCUSSION

Comparison of the results for different inventories shows a
remarkable divergence in accuracy (Table 6). One explanation
could be the predominance of landslides triggered by tropical
cyclones within the training data. In this hypothesis, the model is
well-calibrated to predicting major cyclonic events but not
isolated landslides. However, we believe this is not the
sole—or even the primary—cause of the divergence. Some
important false negatives, such as the February 6, 2019
landslides in Rio de Janeiro (Figure 4) and the Regent
landslide in Sierra Leone, were not predicted due to the
absence of heavy rainfall shown by IMERG. IMERG tends to
underestimate the intensity of some mesoscale convective
systems (Cui et al., 2020) because the orbiting passive
microwave sensors within the IMERG constellation can miss
short, intense peaks in precipitation if there is not a recent
overpass. However, underestimation of peak rain rates should
be less important for the IMERG Early product (Maranan et al.,
2020). In contrast, IMERG estimates heavy rainfall from tropical
cyclones well (Omranian et al., 2018; Huang et al., 2019). Recent
object-based analysis also found that IMERG performs better
with large, intense storms, although it often underestimates peak
precipitation rates (Li et al., 2020). These known errors may limit
the resolution of short but intense convective events that can form
and dissipate quickly, causing localized landslides and flashfloods.

Although LHASA version 2 may miss some of these events, the
IMERG algorithm team is working to better resolve extreme
precipitation events, which should improve the model’s future
performance.

In addition to errors in precipitation estimates, the divergence
could be explained by anthropogenic factors. The multitemporal
inventories, such as the GLC and USLI, containmany landslides in
anthropogenically modified terrain, such as along roads and in
mines. These sites may have required far less rain to trigger
landslides than the relatively natural areas covered by much of
the event-based inventories. The performance of the model on the
LRC data points suggests that these submissions are of comparable
quality to the GLC and other report-based inventories; thus, future
models could be trained with these data. This should not be too
surprising, since all points in the LRC are reviewed by NASA staff
prior to publication (Juang et al., 2019). LHASA version 2 does not
incorporate any measures of anthropogenic disturbance, which
limits its ability to predict many life-threatening landslides.
Deforestation is one mechanism through which humans alter
the environment and increase landslide hazard. This factor was
not included in LHASA version 2, but it may be possible to detect
the effects of deforestation on landslide hazard at the global scale.
Future work can also address the challenge of anthropogenic
impact by considering one or more indices of disturbance that
could be added to the model as explanatory variables.

Although incorporation of SMAP data in LHASA version 2
provides valuable information on antecedent conditions, it also
limits the nowcast to a specific spatiotemporal domain. SMAP’s
landmask excludes some small coastal areas such as the delta north
of Balubuk, Indonesia, but these are very small in comparison to
the earth’s total land mass. More significantly, the SMAP L4
product does not cover dates prior to the Spring of 2015. This
limits the applicability of LHASA version 2 to long-term analyses
of climate and landslide hazard, as well as the length of the model
calibration period. However, it is still possible to train the global
landslide nowcast with the available data, and the inclusion of
both snow mass and soil moisture in some decision trees
(Table 5) indicates that these variables are acting to reduce
errors. In addition to the limited domain, using the SMAP
product introduces a second limitation to the model’s real-time
implementation to the prior potential for interruptions to

FIGURE 6 | The mean prediction over the time period May 1, 2015 to April 30, 2020 was lowest in many of the world’s deserts and highest in small areas of the
Northern Andes and New Guinea.

Frontiers in Earth Science | www.frontiersin.org May 2021 | Volume 9 | Article 64004311

Stanley et al. Data-Driven Landslide Nowcasting

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


IMERG data production and transfer. These interruptions are
expected to be rare, but one such outage coincided with the
passage of Hurricane Iota through Central America in
November 2020 with the result that nowcast publication was
delayed by one day. Nevertheless, based on the model
evaluation, the benefits of incorporating antecedent
conditions from the SMAP L4 product outweigh the
challenges. Future iterations of the LHASA version 2 model
may consider additional soil moisture products or integrate
information from upcoming missions.

The most labor-intensive task in developing LHASA version
2 was compiling the gridded global landslide inventory. The lack
of standardized file formats, schema, and publication methods
prevented the use of fully automated methods for filtering and
merging data from a wide variety of institutions. Even locating
openly available landslide inventories required substantial
effort. The United States Geological Survey hosts a repository
of earthquake-triggered landslide inventories that has achieved
a relatively high level of participation by the research
community (Schmitt et al., 2017), which facilitates finding
and obtaining the relevant data. Unfortunately, no
comprehensive collection of rainfall-triggered landslides has
achieved comparable success. A few researchers have shared
data through NASA’s Cooperative Online Landslide
Repository1, but most data on that portal was produced by

NASA. We hope that the new LandAware effort will help to
coordinate data sharing across a diverse research community
(Calvello et al., 2020).

Machine learning has a reputation for producing “black box”
models that cannot be easily understood. Although this might be
true for recurrent neural networks, tree-based models like XGBoost
are much easier to interpret. The contents of each tree can be shown
in human readable format and reviewed individually for plausibility.
Even for ensembles with hundreds of trees, this effort could be
completed in finite time by a human reviewer. In the development of
LHASA version 2, we took additional measures to build trust and
enhancemodel interpretability. The use ofmonotonicity constraints,
interaction constraints, and a tree depth limit of 2 forced the model
into a simple and consistent structure. Not coincidentally, this
structure parallels that of LHASA version 1, with its division into
triggering rainfall and contributing factors. This familiarity should
help end users transition between model versions. These practices
not only facilitated model interpretation, but also prevented
overfitting. We consider this ease of interpretation a crucial
strength of LHASA version 2, and one that should more easily
allow regulators and other stakeholders to trust the model results.

In addition to building trust, model interpretability may enhance
scientific research by illuminating which known physical processes
have acted most frequently, most strongly, or in specific instances.
Sensitivity analysis, scenario analysis, and visualization can also be
important tools for this purpose. In evaluating the model, we
produced numerous diagrams in which two factors were
systematically varied from historical conditions. Figure 7 shows

FIGURE 7 | Contours from an analysis in which the current day’s rainfall (rescaled at each grid cell) and antecedent rainfall were varied over a wide range of potential
inputs, while keeping all other variables consistent with historical conditions on December 16, 2015 in Eastern Luzon, Philippines (122.3542, 16.73756). Dark blue indicates
low probability of landslide occurrence, while yellow indicates high probabilities. The shape and spacing of the contours indicate that both variables play an important role in
landslide hazard, but the tighter spacing of the contours along the y axis suggests that the model weights current daily rainfall more heavily than prior rainfall.

1https://landslides.nasa.gov
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one example of this process in which the relative contributions of
current and antecedent rainfall can be seen in one historical scenario.
The contour shape and spacing shows that the rescaled daily rainfall
variable has a strong influence on model outputs, while the
antecedent rainfall has a lesser but still substantial influence.
Since standard validation metrics can be misleading (Steger et al.,
2016), we recommend checks like these to all empirical landslide
modelers.

The shift from LHASA version 1 to version 2 doubled the
accuracy of the global landslide nowcast for the inventories
evaluated. Furthermore, the new version produces a
continuous output that facilitates use cases with a wider
variety of trade-offs between false positives and false
negatives. The model succeeded at identifying landslides
triggered by major tropical cyclones, but missed a majority
of landslides contained in national and global multitemporal
inventories, which tend to contain more isolated and
anthropogenically influenced landslides. Nevertheless,
LHASA version 2 outperforms the existing product on these
inventories as well. NASA Goddard Space Flight Center has
begun publishing the new global landslide nowcast, which
should be available by the middle of 2021. To enable other
institutions to run the model, the source code will be published
at https://github.com/nasa/LHASA.

Future research should be directed toward locating and
quantifying the effects of anthropogenic slope modification,
given the underestimates of landslide hazard in disturbed
terrain. In addition, the dynamic effects of wildfire,
earthquakes, and forest loss have not been fully captured by
the variables used in this model; more research must be done to
incorporate these into LHASA. Finally, more work needs to be
done to convert these results into real-time estimates of global
landslide risk. We anticipate that with greater sharing of landslide
inventories, vulnerability estimates, and other information across
the global communities of scientific research and disaster
response, these goals may be achieved. LHASA version 2
advances our understanding of landslide hazard and could
help to identify populations and infrastructure at risk from
landslides around the world.
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